Source code for megaman.embedding.ltsa

"""Local Tangent Space Alignment"""

# Author: James McQueen -- <jmcq@u.washington.edu>
# LICENSE: Simplified BSD https://github.com/mmp2/megaman/blob/master/LICENSE
#
#
# After the sci-kit learn version by:
#         Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
#         Jake Vanderplas  -- <vanderplas@astro.washington.edu>
# License: BSD 3 clause (C) INRIA 2011

import warnings
import numpy as np
import scipy.sparse as sparse
from scipy.linalg import eigh, svd, qr, solve
from scipy.sparse import eye, csr_matrix

from ..embedding.base import BaseEmbedding
from ..utils.validation import check_random_state, check_array
from ..utils.eigendecomp import null_space, check_eigen_solver


[docs]def ltsa(geom, n_components, eigen_solver='auto', random_state=None, solver_kwds=None): """ Perform a Local Tangent Space Alignment analysis on the data. Parameters ---------- geom : a Geometry object from megaman.geometry.geometry n_components : integer number of coordinates for the manifold. eigen_solver : {'auto', 'dense', 'arpack', 'lobpcg', or 'amg'} 'auto' : algorithm will attempt to choose the best method for input data 'dense' : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. 'arpack' : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. 'lobpcg' : Locally Optimal Block Preconditioned Conjugate Gradient Method. A preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems. 'amg' : AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. random_state : numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. solver_kwds : any additional keyword arguments to pass to the selected eigen_solver Returns ------- embedding : array-like, shape [n_samples, n_components] Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- * Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004) """ if geom.X is None: raise ValueError("Must pass data matrix X to Geometry") (N, d_in) = geom.X.shape if n_components > d_in: raise ValueError("output dimension must be less than or equal " "to input dimension") # get the distance matrix and neighbors list if geom.adjacency_matrix is None: geom.compute_adjacency_matrix() (rows, cols) = geom.adjacency_matrix.nonzero() eigen_solver, solver_kwds = check_eigen_solver(eigen_solver, solver_kwds, size=geom.adjacency_matrix.shape[0], nvec=n_components + 1) if eigen_solver != 'dense': M = sparse.csr_matrix((N, N)) else: M = np.zeros((N, N)) for i in range(N): neighbors_i = cols[rows == i] n_neighbors_i = len(neighbors_i) use_svd = (n_neighbors_i > d_in) Xi = geom.X[neighbors_i] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors_i, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1. / np.sqrt(n_neighbors_i) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors_i, neighbors_i) with warnings.catch_warnings(): # sparse will complain this is better with lil_matrix but it doesn't work warnings.simplefilter("ignore") M[nbrs_x, nbrs_y] -= GiGiT M[neighbors_i, neighbors_i] += 1 return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver, random_state=random_state,solver_kwds=solver_kwds)
[docs]class LTSA(BaseEmbedding): """ Local Tangent Space Alignment Parameters ---------- n_components : integer number of coordinates for the manifold. radius : float (optional) radius for adjacency and affinity calculations. Will be overridden if either is set in `geom` geom : dict or megaman.geometry.Geometry object specification of geometry parameters: keys are ["adjacency_method", "adjacency_kwds", "affinity_method", "affinity_kwds", "laplacian_method", "laplacian_kwds"] eigen_solver : {'auto', 'dense', 'arpack', 'lobpcg', or 'amg'} 'auto' : algorithm will attempt to choose the best method for input data 'dense' : use standard dense matrix operations for the eigenvalue decomposition. Uses a dense data array, and thus should be avoided for large problems. 'arpack' : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. 'lobpcg' : Locally Optimal Block Preconditioned Conjugate Gradient Method. A preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems. 'amg' : AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. random_state : numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random.RandomState solver_kwds : any additional keyword arguments to pass to the selected eigen_solver References ---------- .. [1] Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004) """ def __init__(self, n_components=2, radius=None, geom=None, eigen_solver='auto', random_state=None, tol=1e-6, max_iter=100, solver_kwds=None): self.n_components = n_components self.radius = radius self.geom = geom self.eigen_solver = eigen_solver self.random_state = random_state self.solver_kwds = solver_kwds
[docs] def fit(self, X, y=None, input_type='data'): """Fit the model from data in X. Parameters ---------- input_type : string, one of: 'data', 'distance'. The values of input data X. (default = 'data') X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. If self.input_type is 'distance', or 'affinity': X : array-like, shape (n_samples, n_samples), Interpret X as precomputed distance or adjacency graph computed from samples. Returns ------- self : object Returns the instance itself. """ X = self._validate_input(X, input_type) self.fit_geometry(X, input_type) random_state = check_random_state(self.random_state) (self.embedding_, self.error_) = ltsa(self.geom_, n_components=self.n_components, eigen_solver=self.eigen_solver, random_state=random_state, solver_kwds = self.solver_kwds) return self